# Exposure assessmentfrom books to real life

Vivi Schlünssen, vs@ph.au.dk

Department of Public Health, Danish Ramazzini Centre, Aarhus University/ National Research Center for the Working Environment, Copenhagen







#### **Outline**

- Exposure
  - Exposure vs. dose, agents
  - Exposure dimensions



- Exposure assessment
  - Methods of assessment
  - Exposure metrics
  - Exposure variability





- Grouping of exposure
  - Unbiased estimates
  - Job exposure matrics
  - · An alternative to self-reported measurement

## Why need to assess exposure

- To identify population groups with increased risks
- To quantify the relationship between exposure and adverse human health effects
- To control exposure in the workplace









## Question one

What is exposure?









#### What is exposure

"The presence of a substance in the environment external to the worker" Checkoway, Pearce, Crawford-Brown, Oxford Uni Press; 1989

"Any contact between a substance in an environmental medium (e.g. water, air, soil) and the surface of the human body (e.g. skin, respiratory track)" Nieuwenhuijsen Oxford Uni Press; 2003

"Contact between an agent and a target. Contact takes place at an exposure surface at a specific point of time" Zartarian, J Expo Anal Environ Epidemiol; 2005



D A N I S H ramazzini C E N T R E



#### What isn't exposure

#### A Dose

- Definition of dose:
  - "The amount of an agent that enters a target after crossing an exposure surface" Zartarian et al, J Expo Anal Environ Epidemiol: 2005
  - "The amount of a substance available for interaction with metabolic processes or biologically significant receptors after crossing the outer boundary of an organism" Hayes, Principles and methods of toxicology. Taylor and Francis; 2001



DANISH ramazzini CENTRE



## Exposure vs. dose

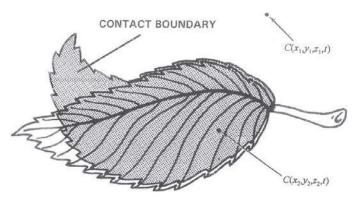



FIGURE 1. Conceptual contact boundary on the surface of a leaf. It is peeled back for illustration. The leaf is exposed to the concentration  $C(x_j, y_j, x_j)$  at time t. It is not exposed to the concentration  $C(x_j, y_j, x_j)$ , because point 1 is not located on the leaf's contact boundary.

Zartarian, J Expo Anal Environ Epidemiol ;1997

## **Question Two**

What about biomarkers?







#### **Exposure agents**

Agent is a chemical, biological, or physical entity that contacts a target"

Zartarian et al, J Expo Anal Environ Epidemiol; 2005

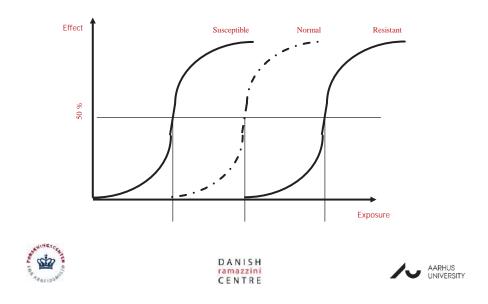
- Examples:
  - Chemical: asbestos, benzene
  - Biological: microbial dusts, endotoxin
  - Physical: heat, noise, light, mechanical forces
  - Psychosocial: Job strain, relational justice



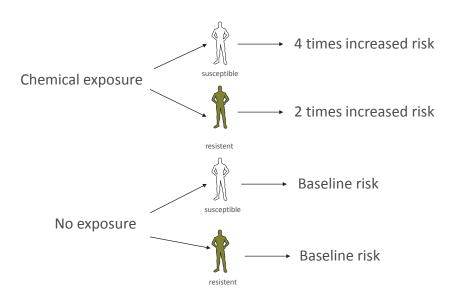




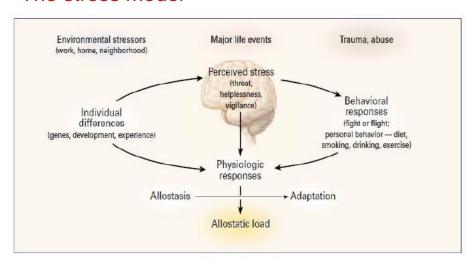
## Question three


How fits the concept of exposure, agent and dose for psychosocial exposure and mechanical forces?









## Susceptibility



#### Genetic variation in cancer metabolism



#### The stress model



McEwen B. N Engl J Med, 1998

## How is exposure characterized

#### Exposure has 3 dimensions:

1. Intensity - i.e. how much?





2. Duration - i.e. how long?



3. Frequency – i.e. how often?











DANISH ramazzini CENTRE



#### **Exposure assessment**

"The process of estimating or measuring the magnitude, frequency and duration of exposure to an agent along with the number and characteristics of the population involved.

Zartarian, J Expo Anal Environ Epidemiol: 2005









#### Measurement instruments

#### Surveys

- Questionnaires
- Interviews
- Diaries

**Expert opinions** 



#### Exposure models

- Statistical/empirical
- Deterministic
- > Job-exposure matrices

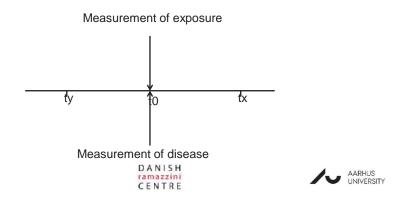
#### Registers

#### Actual measurements

- Environment or worker's contact boundaries
- Blood and/or other biological speciments

## **Exposure metrics**

# Used to estimate different summary measures (metrics) of exposure








## Exposure metrics: current exposure

The concentration of exposure at the time of the investigation or at certain and short period before or after it. Usually it relates to an investigation for a health outcome





#### Exposure metrics: average exposure

Arithmetic or geometric mean of exposures (current or past)

Mean C= 
$$\frac{\text{Cjob1+ Cjob2+ Cjob3+..... Cjob}n}{n}$$

n





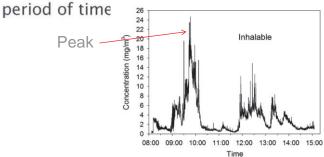


## Exposure metrics: Cumulative exposure

The summation of the concentration of exposure over lifetime or over a specific period of time

Cumulative  $exp = \Sigma_i$  (years<sub>i</sub> x intensity<sub>i</sub>)

Cumulative  $exp = \Sigma_i$  (years<sub>i</sub> x frequency<sub>i</sub> x intensity<sub>i</sub>)








#### Exposure metrics: Peak or highest exposure

Peak: the highest exposure concentration that someone is exposed to for a specific and minimum



Highest: he highest concentration someone is exposed during lifetime or over a long period of time

Figure from Freberg, Ann Occup Hyg: 2014

## Question four

## Discuss choice of exposure metric for:

- •Job strain and acute myocardial infarction?
- •Organic dust exposure and asthma?
- •Shift work and breast cancer?







## Summary first hour

- Exposure and dose are not the same
- Remember the 3 exposure dimensions: duration, intensity, frequency
- The proper exposure metric depends on the suspected mechanism and the outcome

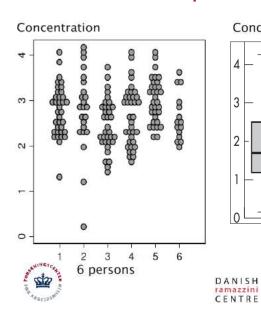


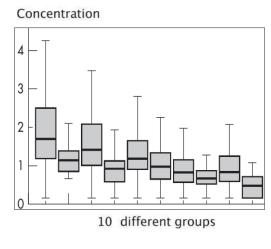






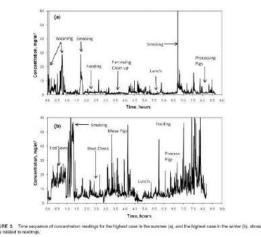
## Question four


Discuss advantages and drawbacks for an individual based exposure metric and a group based exposure metric respectively









## **Exposure vary!**

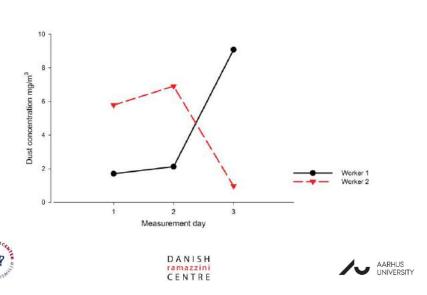






## Variability in exposure within a day




O'Shaughnessy, J Occup Environ Hyg: 2010







# Variability in exposure from day-to-day and between-workers among poultry farmers



## Exposure varies.....

- Within a day (within-day)
- From day-to-day (withinworkers/temporal)
- Between-workers
- Between-groups of workers/factories







## Estimates of variance components, 3 x 292 dust measurement, furniture industry

Between workers

|                |       | Variance | GSD  |
|----------------|-------|----------|------|
| Within worker  | rs    | 0.270    | 1.69 |
| Within factori | es    | 0.215    | 1.59 |
| Between facto  | ories | 0.038    | 1.22 |
| Total          |       | 0.523    | 2.06 |

Vinzents et al Ann Occup Hyg 2001







### Attenuation bias?

 $\lambda$  = The within- to between-worker ratio of variance

$$\beta^* = 1/(1 + \lambda/n) \times \beta(Cochran 1968)$$

 $\beta^*$  = observed regression coefficient

 $\beta$  = true regression coefficient

n = number of observations per worker

 $\lambda$  = within- to between-worker ratio of variance







#### Measurement errors models

Consequences for relations between exposure and health outcome

#### Classical error model

Measurement errors behaving according to a classical error model *introduce bias* in the estimates.

Slope estimates from linear regression are attenuated towards zero. Correction factors have been developed, but correction introduce *additional uncertainty* 

#### Berkson error model

Measurement errors behaving according to a Berkson error model *do not introduce bias* in the estimates, but *additional uncertainty* in the estimation must be anticipated

4 June 2014

Michael Væth: Exposure-effect analysis

-5

#### Effect of variance on attenuation bias

|                                  | λ   | % of "true" slope<br>with 1 measurement | Number of<br>measurements if<br>75% of "true"<br>slope |
|----------------------------------|-----|-----------------------------------------|--------------------------------------------------------|
| Wood dust,<br>furniture industry | 1.1 | 48% of "true" slope                     | 3                                                      |
| Dust, pig farming                | 3.4 | 23% of "true" slope                     | 10                                                     |
| Endotoxin, pig farming           | 10  | 9% of "true" slope                      | 30                                                     |

 $\lambda = \text{The within- to between-worker ratio of }$   $\text{variance}_{\text{Schlünssen et al Ann Occup Hyg 2008; Basinas et al J Environ Mon 2012}}$ 







## Question five

Discuss solutions for a situation with a large within- to between-worker ratio of variance







#### Solution?

- A lot of measurements!
- Calibration factor
- Grouping of subjects
- Modelling







Cross-shift changes in FEV<sub>1</sub> in relation to wood dust exposure: the implications of different exposure assessment methods

V Schlünssen, T Sigsgaard, I Schaumburg, H Kromhout

Table 2 Variance components and contrast using different grouping strategies

|                                                              | Number of groups | BGSy <sup>2</sup>       | wg\$y²                  | wwS <sub>y</sub> <sup>2</sup> | TOTAL Sy 2              | Contrast                                  |
|--------------------------------------------------------------|------------------|-------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------------------|
| Contrast                                                     | = BG             | $S_y^2/($               | $_{\rm BG}S_{\rm y}$    | $^{2}+_{W}$                   | $(GS_y^2)$              | 0.300<br>0.033<br>0.170<br>0.098<br>0.228 |
| Task + factory size Task + factory Task + factory, quintiles | 12<br>246*<br>5  | 0.139<br>0.142<br>0.204 | 0.136<br>0.134<br>0.115 | 0.263<br>0.2635<br>0.263      | 0.538<br>0.539<br>0.582 | 0.505<br>0.514<br>0.639                   |

# The result depended on the exposure metric used ...

**Table 4** Adjusted linear regression on cross-shift decline in FEV<sub>1</sub> (the residuals adjusted for age, gender, and height) and dust exposure (1156 individuals)

| Exposure estimates        | Coeff† | SE   | p value |
|---------------------------|--------|------|---------|
| 1. Individual, 1. round   | 0.397  | 0.23 | 0.09    |
| 2. Individual, all rounds | 0.403  | 0.25 | 0.10    |
| 3. Individual, 4 groups   | 0.369  | 0.29 | 0.20    |
| 4. 12 categories          | 0.681  | 0.58 | 0.24    |
| 5. 5 categories           | 0.161  | 0.39 | 0.68    |
| 6. Weighted estimate      | 0.631  | 0.39 | 0.10    |
| 7. Mixed model 1          | 0.199  | 0.40 | 0.62    |
| 8. Mixed model 2          | 0.565  | 0.41 | 0.17    |

# In register-based studies – Job exposure matrix

| job |                       | $\neg  \neg$ |   |                 |
|-----|-----------------------|--------------|---|-----------------|
| 1   | Junior worker         |              |   |                 |
| 2   | Concrete worker       |              |   |                 |
| 3   | Carpenter apprentices |              | _ | Exposure levels |
| 4   | Carpenter             |              |   |                 |
| 5   | Carpenter             |              |   |                 |
| 6   | Teacher               |              |   |                 |







### Exposure info in Job Exposure Matrices

- Expert judgements
- Expert judgements calibrated against measurements
- Measurements







#### Important contributions from Ramazzini....

Rubak et al. BMC Musculoskeletal Disorders 2014, 15:204 http://www.biomedcentral.com/1471-2474/15/204



#### RESEARCH ARTICLE

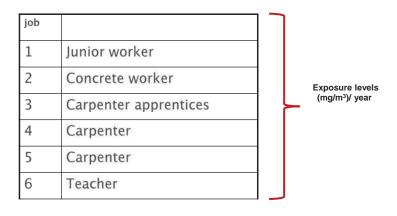
Open Access

An expert-based job exposure matrix for large scale epidemiologic studies of primary hip and knee osteoarthritis: The Lower Body JEM

Tine Steen Rubak<sup>1†</sup>, Susanne Wulff Svendsen<sup>2</sup>, Johan Hvlid Andersen<sup>2</sup>, Jens Peder Lind Haahr<sup>2</sup>, Ann Kryger<sup>3</sup>, Lone Donbæk Jensen<sup>4</sup> and Poul Frost<sup>4</sup>

Workplace




ORIGINAL ARTICLE

Cumulative occupational shoulder exposures and surgery for subacromial impingement syndrome: a nationwide Danish cohort study

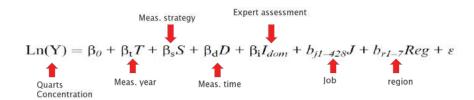
Annett Dalbøge, <sup>1</sup> Poul Frost, <sup>1</sup> Johan Hviid Andersen, <sup>2</sup> Susanne Wulff Svendsen <sup>2</sup>
To cite: Dall

**To cite:** Dalbøge A, Frost P, Andersen JH, et al. Occup Environ Med 2014;**71**: 750–756.

## A quantitative approach...







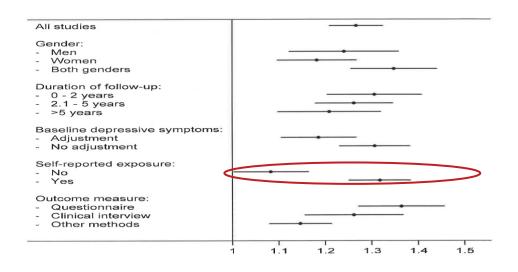



#### Modelling of occupational respirable crystalline silica exposure for quantitative exposure assessment in community-based case-control studies

Susan Peters, <sup>a</sup> Roel Vermeulen, <sup>ab</sup> Lützen Portengen, <sup>a</sup> Ann Olsson, <sup>c</sup> Benjamin Kendzia, <sup>d</sup> Raymond Vincent, <sup>e</sup> Barbara Savary, <sup>e</sup> Jérôme Lavoué, <sup>f</sup> Domenico Cavallo, <sup>g</sup> Andrea Cattaneo, <sup>h</sup> Dario Mirabelli, <sup>i</sup> Nils Plato, <sup>j</sup> Joelle Fevotte, <sup>k</sup> Beate Pesch, <sup>d</sup> Thomas Brüning, <sup>d</sup> Kurt Straif <sup>e</sup> and Hans Kromhout <sup>a</sup>

J. Environ. Monit., 2011, 13, 3262




## Grouping an alternative to self-reported exposure.....







# Psychosocial working environment and depression. 38 follow-up studies. Odds ratio (Mathias Grynderup, phd thesis AU, 2013)



## Measurements of psychosocial exposure groups by work unit..

#### Job Strain and Ischemic Heart Disease: A Prospective Study Using a New Approach for Exposure Assessment

(J Occup Environ Med. 2009;51:732-738)

Jens Peter Bonde, MD Torsten Munch-Hansen, MSc Esben Agerbo, PhD Poul Suadicani, PhD Joanna Wieclaw, PhD Niels Westergaard-Nielsen, PhD

ORIGINAL ARTICLE

Work-unit measures of organisational justice and risk of depression—a 2-year cohort study

Matias Brødsgaard Grynderup, <sup>1</sup> Ole Mors, <sup>2</sup> Åse Marie Hansen, <sup>3,4</sup> Johan Hviid Andersen, <sup>5</sup> Jens Peter Bonde, <sup>6</sup> Anette Kærgaard, <sup>5</sup> Linda Kærlev, <sup>7</sup> Sigurd Mikkelsen, <sup>6</sup> Reiner Rugulies, <sup>4</sup> Jane Frølund Thomsen, <sup>6</sup> Henrik Albert Kolstad <sup>1</sup>

Grynderup MB, et al. Occup Environ Med 2013;70:380-385.

## Summary second hour

- Exposure vary!
- Evaluation of attenuation bias
- Grouping



DANISH ramazzini CENTRE



