PESTICIDE EXPOSURE AND DIABETES MELLITUS IN A SEMI-URBAN NEPALI POPULATION

Martin Rune Hassan Hansen^{1,2}, Bishal Gyawali³, Dinesh Neupane⁴, Erik Jørs⁵, Annelli Sandbæk⁶, Per Kallestrup³ and Vivi Schlünssen^{1,2}

- 1. Danish Ramazzini Centre, Section for Environment, Work and Health, Department of Public Health, Aarhus University
- 2. National Research Centre for the Working Environment, Copenhagen
- 3. Center for Global Health (GloHAU), Department of Public Health, Aarhus University
- 4. Nepal Development Society, Chitwan, Nepal
- 5. Department of Occupational Medicine, Odense University Hospital, Odense
- 6. Section of General Practice, Department of Public Health, Aarhus University

RAMAZZINI SEMINAR MARTIN RUNE HASSAN HANSEN OCTOBER 26TH 2017 M.D., PHD STUDENT

Introduction

RAMAZZINI SEMINAR OCTOBER 26TH 2017 M.D., PHD STUDENT

MARTIN RUNE HASSAN HANSEN

BACKGROUND 1/5

What are pesticides?

- Diverse group of chemicals used for killing organisms considered unwanted by humans.
- Differ with regards to the organisms targeted (plants, fungi, insects, rodents) and the mode of action.

Acute health effects of pesticides

- Pesticides are, by definition, toxic compounds.
- Intoxication due to high-level, acute pesticide exposure is well-known.

BACKGROUND 2/5

Suspected chronic health effects of pesticides

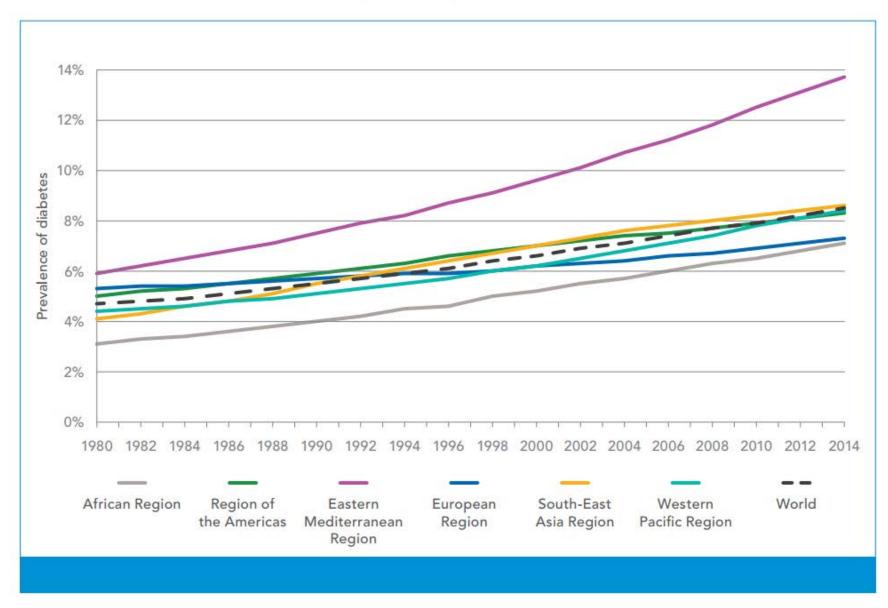
- Chronic neurologic disease.
- Developmental defects of the CNS.
- Lung function impairment
- Diabetes mellitus
- Cancer
- Etc.

BACKGROUND 3/5

Pesticides and diabetes

- Recent systematic review on pesticides and diabetes: Exposure to organochlorine insecticides associated with increased risk of diabetes mellitus.¹
- The authors found few studies on other classes of pesticides, and results cannot be extrapolated.
- However, some epidemiological studies also suggest associations with other classes of pesticides.^{2,3}

3. Hansen MR, Jors E, Lander F, Condarco G, Schlunssen V. Is cumulated pyrethroid exposure associated with prediabetes? A cross-sectional study. *J Agromedicine* 2014;19:417-26.



RAMAZZINI SEMINAR MARTIN RUNE HASSAN HANSEN OCTOBER 26TH 2017 M.D., PHD STUDENT

Evangelou E, Ntritsos G, Chondrogiorgi M et al. Exposure to pesticides and diabetes: A systematic review and meta-analysis. *Environ Int* 2016;91:60-8.

^{2.} Velmurugan G, Ramprasath T, Swaminathan K et al. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. *Genome Biol* 2017;18:8.

BACKGROUND 4/5

FIGURE 4B. TRENDS IN PREVALENCE OF DIABETES, 1980-2014, BY WHO REGION

Source: Global report on diabetes. World Health Organization, 2016.

RAMAZZINI SEMINARMARTIN RUNE HASSAN HANSENOCTOBER 26TH 2017M.D., PHD STUDENT

SCIMUL SUNDHED

LÆR AT ELSKE DIT Løse maveskind

SÅDAN Bliver Du God til grød

VÆLG DEN Rigtige Elcykel 56% af den konventionelle salat fra udlandet indeholder rester af sprøjtegift

> **0**% af den økologiske salat indeholder rester af sprøjtegift

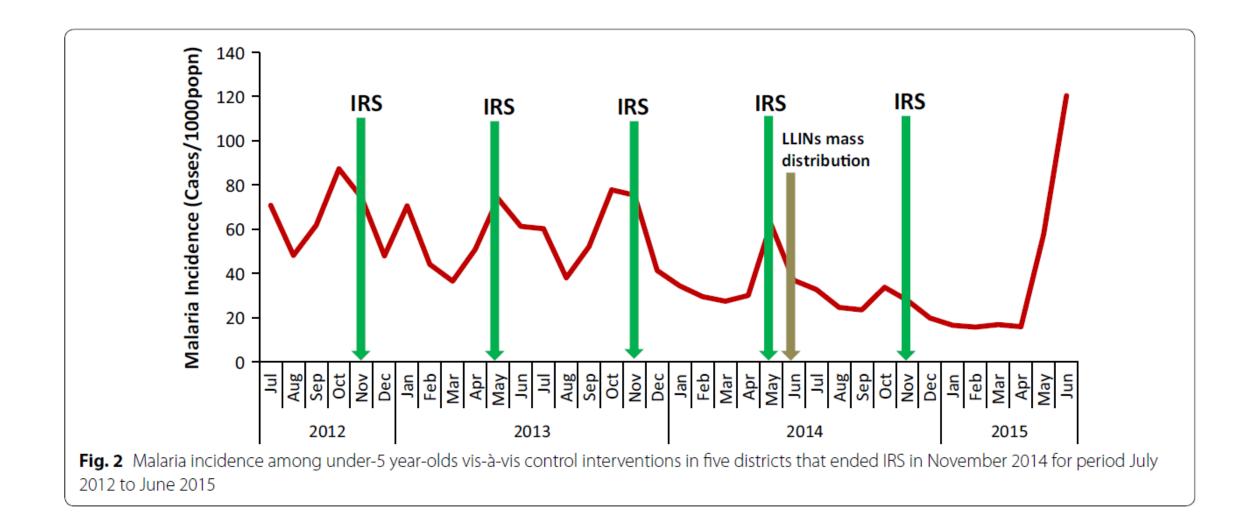
> > OKTOBER 2017 PRIS 49 KR

39400

Sprøjtegift er HVERDAGSKOST

Salaten indeholder rester af sprøjtegift. Det samme gør andre grøntsager, frugter, brød og vin. Giften er lovlig på marken, men i kroppen mistænkes den for at give kræft og diabetes

RAMAZZINI SEMINARM.OCTOBER 26TH 2017M


BACKGROUND 5/5

So why don't we just apply the precautionary principle and stop using pesticides?

- Pesticides are important for both food security and public health.
- Malaria kills approximately 429,000 persons per year, 70% of which are children under 5.1
- Indoor residual spraying (IRS) and insecticidetreated bednets are considered important factors in the fight against malaria.¹
- When IRS was stopped in some provinces of Uganda, malaria incidence among children soared to epidemic heights.²
- 1. World malaria report 2016. World Health Organization, 2016.
- 2. Okullo AE, Matovu JKB, Ario AR et al. Malaria incidence among children less than 5 years during and after cessation of indoor residual spraying in Northern Uganda. *Malaria Journal* 2017;16:319.

BACKGROUND 5/5

Source: Okullo AE, Matovu JKB, Ario AR et al. Malaria incidence among children less than 5 years during and after cessation of indoor residual spraying in Northern Uganda. *Malaria Journal* 2017;16:319.

RAMAZZINI SEMINAR MARTIN RUNE HASSAN HANSEN OCTOBER 26TH 2017 M.D., PHD STUDENT

RESEARCH NEEDS 1/2

We need more information for proper risk assessment and management

- Which pesticides and classes of pesticides might be associated with diabetes mellitus?
- Establish exposure-response relationships.

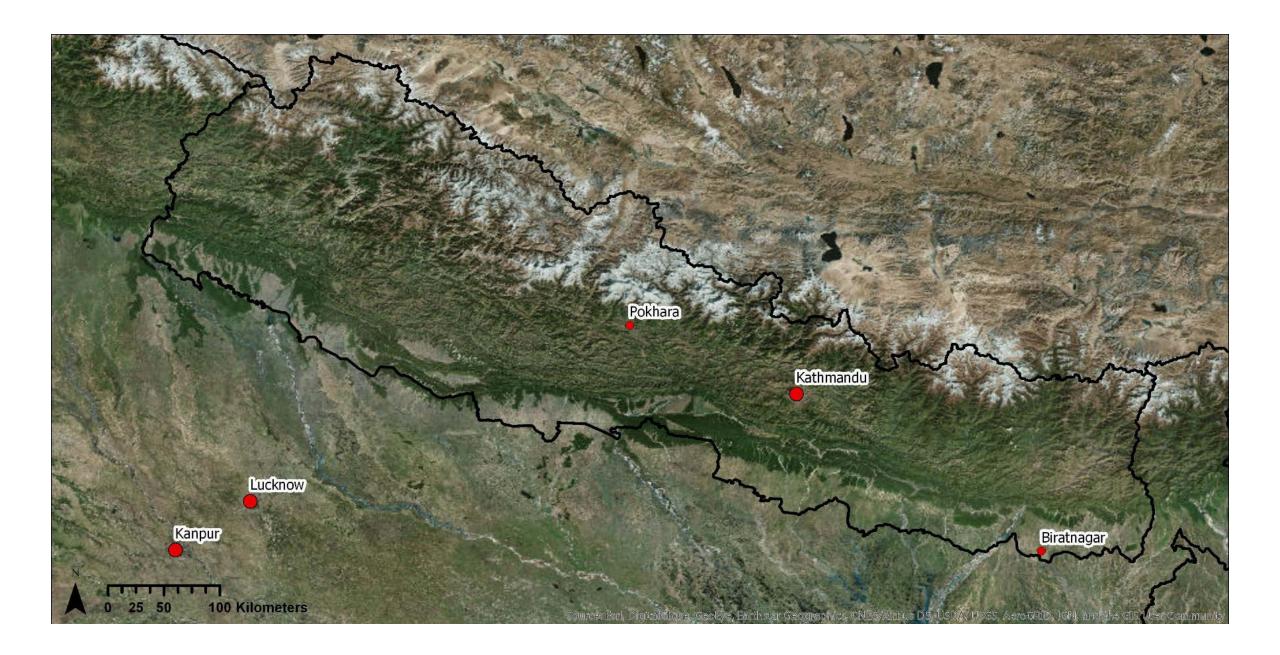
RAMAZZINI SEMINAR MARTIN RUNE HASSAN HANSEN OCTOBER 26TH 2017 M.D., PHD STUDENT

RESEARCH NEEDS 2/2

Pesticide-exposed persons in developing countries need to be investigated, because

- Often...
 - Poorly educated on use of pesticides.
 - Poor use of personal protective equipment
- Result: Expected to have relatively high pesticide exposure levels.

RAMAZZINI SEMINAR OCTOBER 26TH 2017


ENTER THE "COBIN" PROJECT

COBIN (Community-Based Intervention in Nepal)

- Cluster-randomized population study on the effect of education on diabetes and hypertension in Lekhnath community, Nepal.
- 2310 participants tested, clusters randomized to intervention by female community health volunteers or control.
- Intervention started in May 2017.
- *A priori*, 60% of the population expected to be occupationally exposed to pesticides (small-scale farmers).

WHERE IN THE WORLD IS LEKHNATH?

RAMAZZINI SEMINAR MARTIN RUNE HASSAN HANSEN OCTOBER 26TH 2017 M.D., PHD STUDENT

WARDS OF LEKHNATH MUNICIPALITY

RAMAZZINI SEMINAR OCTOBER 26TH 2017

MARTIN RUNE HASSAN HANSEN M.D., PHD STUDENT Altitude exaggerated by a factor of 2.

Methods

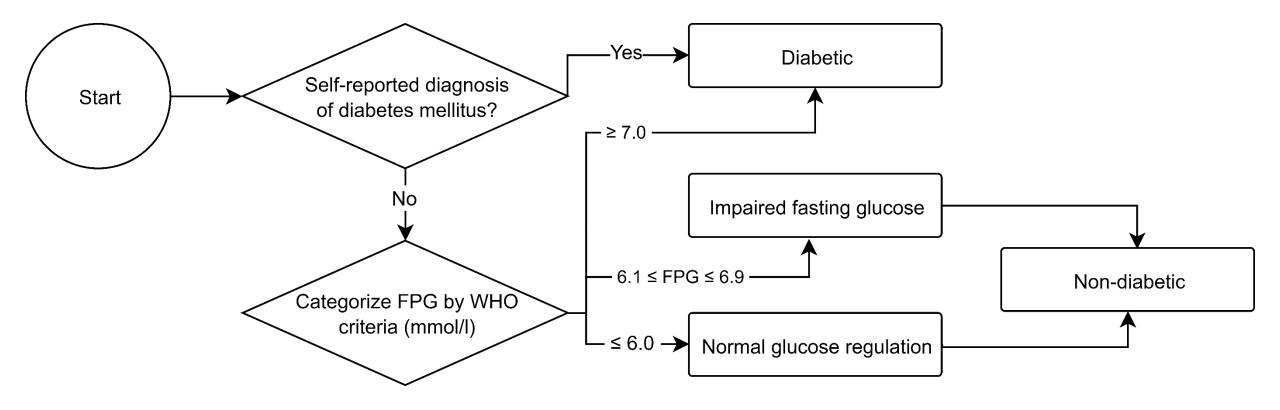
RAMAZZINI SEMINAR OCTOBER 26TH 2017 M.D., PHD STUDENT

MARTIN RUNE HASSAN HANSEN

NESTING A PILOT STUDY ON PESTICIDES IN THE COBIN PROJECT 1/2

October-December 2016: Baseline data collection for diabetes part of COBIN project

- Blood glucose measurements.
 - Original plan: Random plasma glucose (RPG), followed by fasting sample for persons with RPG in grey zone interval.
 - Carried out: Random plasma glucose measurements for everyone.
- Questionnaire data on pesticide exposure and demographics
- Original plan: Use data for power calculations for a second phase with better glucose assessment (HbA_{1c}), more detailed pesticide exposure information and objective measures of exposure (urine samples).


NESTING A PILOT STUDY ON PESTICIDES IN THE COBIN PROJECT 2/2

Example questions

- Do you use or have you used pesticides with/without relation to your job?
- In total, how long have you been using pesticides?
- How many weeks a year are you spraying?
- In the weeks that you spray, how many hours are you spraying?

CLASSIFICATION OF PARTICIPANTS AS DIABETIC OR NON-DIABETIC

CATEGORIZATION OF CONTINUOUS EXPOSURE METRICS

- Analyses showed that the continuous pesticide exposure metrics had severe digit preference.
- It was decided to categorize each metric (cut-points chosen *a priori* without looking at associations with diabetes).

Category	Years of pesticide exposure (Y)	Weeks of pesticide exposure per year (W)	Hours of pesticide exposure per week (H)
1	Y ≤ 5	$W \leq 1$	H ≤ 0.25
2	5 < Y ≤ 10	$1 < W \le 2$	0.25 < H ≤ 0.5
3	Y > 10	W > 2	H > 0.5

Results and discussion

RAMAZZINI SEMINAR OCTOBER 26TH 2017 M.D., PHD STUDENT

MARTIN RUNE HASSAN HANSEN

DEMOGRAPHICS 1/3: BASIC INFORMATION

Parameter	Non-exposed	Exposed	р
n (% of n _{total})	868 (37.6)	1442 (62.4)	-
Sex**			
Female	538 (62.0)	1036 (71.8)	. 0 0 1
Male	330 (38.0)	406 (28.2)	< 0.01
Age in years*	49.6 [40.0 ; 57.1]	46.4 [39.3 ; 54.5]	< 0.01
Years of school*	5.5 [0.0 ; 10.0]	7.0 [1.0 ; 10.0]	0.19
Farming main occupation**	255 (29.4)	583 (40.4)	< 0.01
Ethnicity**			
Upper caste	463 (53.3)	791 (54.9)	
Janajati	262 (30.2)	480 (33.3)	0.01
Others	143 (16.5)	171 (11.9)	
Currently married**	768 (88.5)	1325 (91.9)	0.01

* categorical variable. Numbers are counts (percentage). p-values calculated with Fischer's exact test.

** continuous variable. Numbers are median [interquartile range]. p-values calculated with Wilcoxon rank-sum test.

DEMOGRAPHICS 2/3: HOUSING STANDARDS

Parameter	Non-exposed	Exposed	р
Poor wall materials**	95 (10.9)	85 (5.9)	< 0.01
Poor floor materials**	111 (12.8)	95 (6.6)	< 0.01
Poor fuel type**	212 (24.4)	193 (13.4)	< 0.01
Poor stove type**	186 (21.4)	169 (11.7)	< 0.01
Separate kitchen in house**	812 (93.5)	1374 (95.3)	0.09

** Categorical variable. Numbers are counts (percentage). p-values calculated with Fischer's exact test.

Definitions for categories of housing standards

- Walls: Poor = grass, weeds, wood, bamboo, soil, raw bricks. Good = baked bricks, stone, cement, other.
- Floor: Poor = soil, bamboo. Good = wood, cement, brick, stone, sandstone.
- Fuel type: Poor = firewood, cow dung, plants, grass, weeds. Good = kerosene, LPG gas, biogas, other.
- Stove type: Poor = open stove, traditional oven. Good = improved oven, kerosene stove, gas stove, other.

RAMAZZINI SEMINARMARTIN RUNE HASSAN HANSENOCTOBER 26TH 2017M.D., PHD STUDENT

DEMOGRAPHICS 3/3: HEALTH VARIABLES

Parameter	Non-exposed	Exposed	р
Body Mass Index*	24.9 [21.8 ; 27.8]	25.5 [22.6 ; 28.6]	< 0.01
Waist-to-hip ratio*	0.91 [0.88 ; 0.96]	0.91 [0.87; 0.95]	0.03
Known cardiovascular disease**	38 (4.4)	37 (2.6)	0.02
Family history of diabetes**	162 (18.7)	293 (20.3)	0.36
MET-minutes per week, thousands*	8.400 [5.04 ; 12.00]	8.40 [5.32 ; 13.44]	0.01
Ever smoking**	269 (31.0)	311 (21.6)	< 0.01
Current smoking**	173 (19.9)	192 (13.3)	< 0.01
Pack-years, current smokers*	13.5 [4.3 ; 29.1]	10.1 [4.0 ; 21.5]	0.10

* categorical variable. Numbers are counts (percentage). p-values calculated with Fischer's exact test. ** continuous variable. Numbers are median [interquartile range]. p-values calculated with Wilcoxon rank-sum test.

DESCRIPTIVE STATISTICS, GLYCEMIC STATUS

	Non-exposed	Exposed
Diabetes**	128 (14.7%)	143 (9.9%)
Impaired fasting glucose**	106 (12.2%)	196 (13.6%)
Normal**	634 (73.0%)	1103 (76.5%)

** Categorical variable. Numbers are counts (percentage).

RAMAZZINI SEMINAR MARTIN RUNE HASSAN HANSEN OCTOBER 26TH 2017 M.D., PHD STUDENT

CRUDE ANALYSES OF ODDS OF HAVING DIABETES

Independent variable	OR(diabetes)
Age in years / 10	1.67 [1.46 ; 1.92]
Body Mass Index	1.06 [1.03 ; 1.09]
Waist-to-hip ratio * 10	2.40 [1.98 ; 2.90]
MET-minutes per week / 1000	0.96 [0.94 ; 0.98]
Male sex	1.63 [1.25 ; 2.11]
Family history of diabetes	3.17 [2.42;4.15]
Known cardiovascular disease	3.31 [1.98 ; 5.54]
Pesticide exposure (yes/no)	0.64 [0.49; 0.82]
Spraying duration, trend	0.96 [0.78 ; 1.18]
Spraying intensity, trend	0.97 [0.77 ; 1.22]
Spraying weeks, trend	0.92 [0.75 ; 1.13]

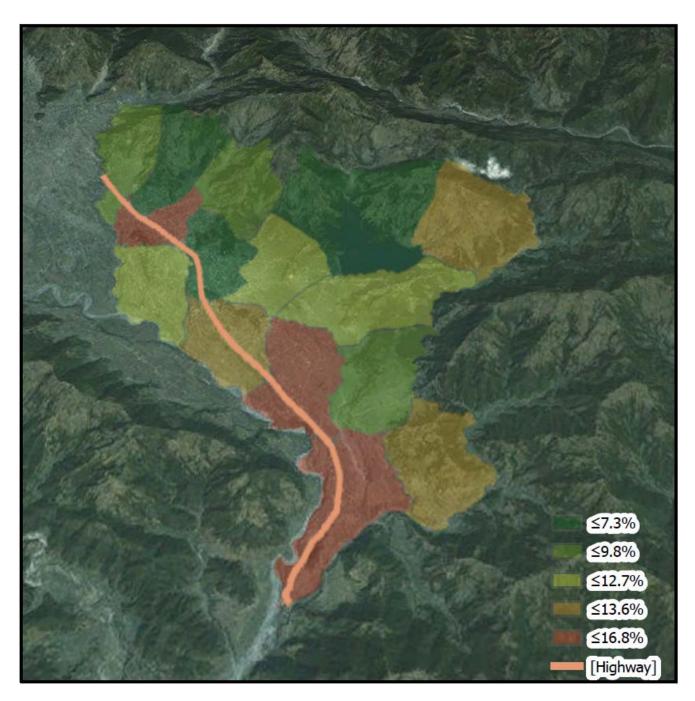
ADJUSTED ANALYSES OF PESTICIDE EXPOSURE VS. ODDS OF HAVING DIABETES

		aOR(diabetes)
Any pesticide exposure		0.68 [0.52 ; 0.90]
across ories	Spraying duration	0.85 [0.68 ; 1.06]
b 0	Spraying intensity	0.94 [0.74 ; 1.21]
Trend cate	Spraying weeks	0.95 [0.76 ; 1.19]

Estimates adjusted for age in years, BMI, waist-to-hip ratio, physical activity level (MET-minutes per week), sex, family history of diabetes and known cardiovascular disease.

RAMAZZINI SEMINARMARTIN RUNE HASSAN HANSENOCTOBER 26TH 2017M.D., PHD STUDENT

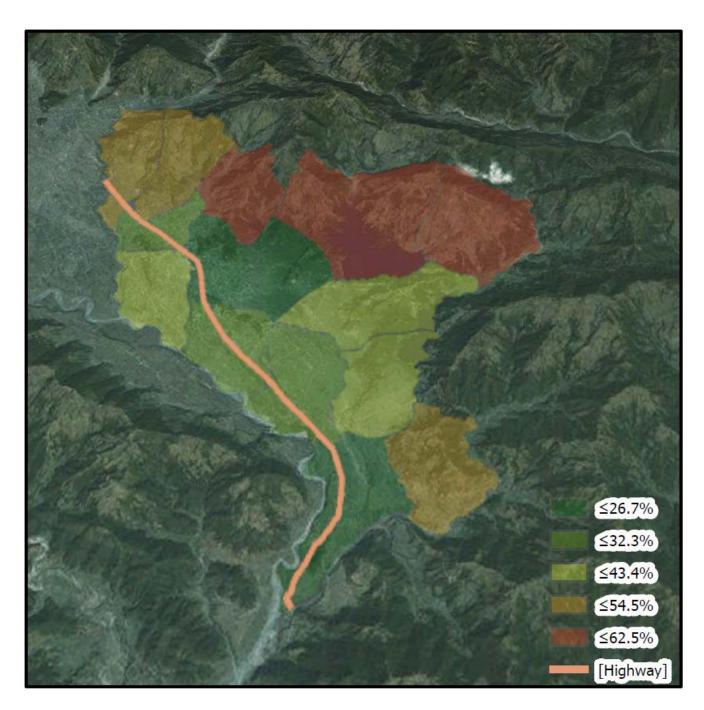
WARDS OF LEKHNATH MUNICIPALITY



RAMAZZINI SEMINAR OCTOBER 26TH 2017

MARTIN RUNE HASSAN HANSEN M.D., PHD STUDENT Altitude exaggerated by a factor of 2.

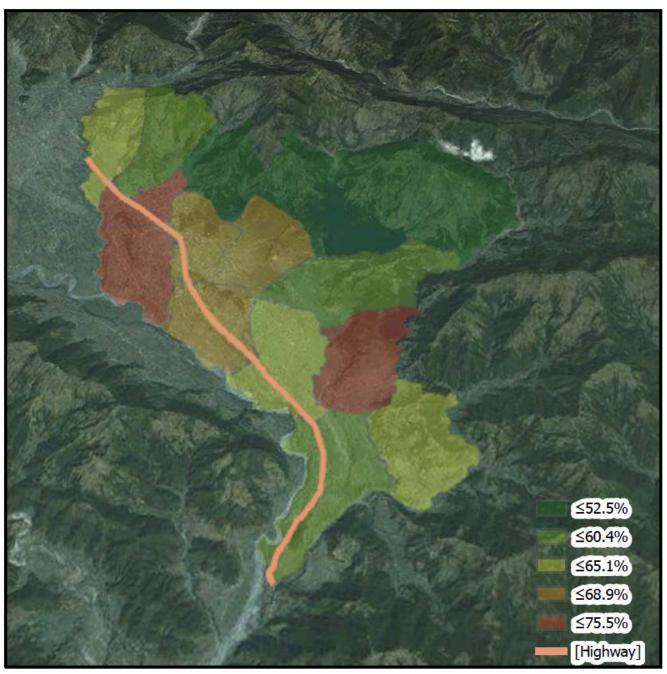
PREVALENCE OF DIABETES PER WARD



Altitude exaggerated by a factor of 2.

RAMAZZINI SEMINAR OCTOBER 26TH 2017

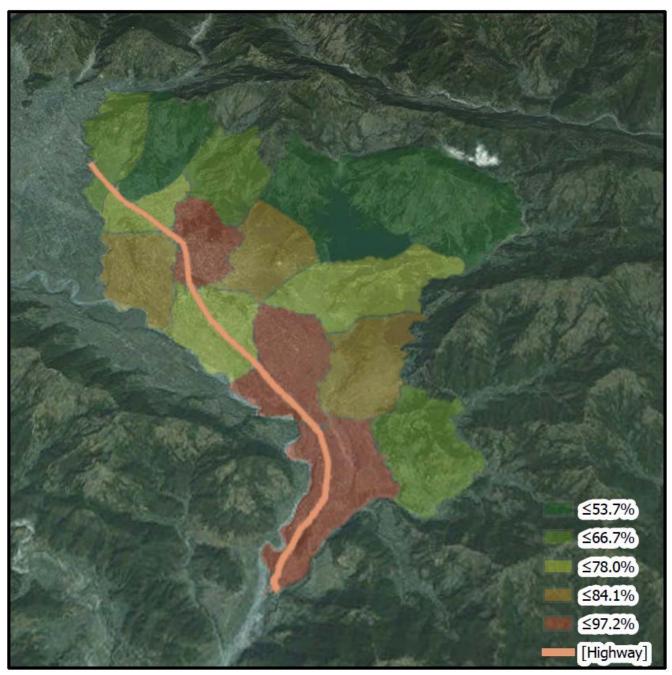
PERCENTAGE FARMERS PER WARD



Altitude exaggerated by a factor of 2.

RAMAZZINI SEMINAR OCTOBER 26TH 2017

PERCENTAGE PESTICIDE-EXPOSED PER WARD (OUT OF ALL PARTICIPANTS)



Altitude exaggerated by a factor of 2.

RAMAZZINI SEMINAR OCTOBER 26TH 2017

PERCENTAGE PESTICIDE-EXPOSED PER WARD (OUT OF FARMERS)

Altitude exaggerated by a factor of 2.

RAMAZZINI SEMINAR OCTOBER 26TH 2017

FIELDS, FIELDS, EVERYWHERE

RAMAZZINI SEMINARMAOCTOBER 26TH 2017M.I

SUMMARY OF ANALYSES ON ACUTE SYMPTOMS OF PESTICIDE INTOXICATION

- Participants had been asked if they had experienced any of 19 specific symptoms within the last month.
- The prevalences were significantly higher for females compared to males, and for older compared to younger individuals.
- Few associations were seen with pesticide exposure (yes/no).
- After adjusting for age and sex, only *muscle cramps* were significantly associated with pesticide exposure.
- These results suggest that pesticide exposure levels in this population are too low to cause acute symptoms.

CONCLUSIONS

- In the COBIN population, pesticide-exposed persons had lower odds of diabetes, adjusted OR = 0.68 [0.52;0.90].
- No clear exposure-response relationships were seen.
- Pesticide exposure levels were so low that few acute symptoms of pesticide exposure were seen.
- There were significant demographic differences between exposed and non-exposed persons with considerable risk of residual confounding.
- Spatial patterns and demographic information suggest we are seeing complex socio-economic and urban-rural gradients, not the effect of pesticides *per se*.

RESEARCH DIRECTIONS

Epidemiological study among workers with high-level, well-characterized pesticide exposure

- Under consideration
 - Vector control workers in Uganda
 - Farmers working in intensive agriculture in southern Nepal.
- Data collection in 2018.

Systematic review and meta-analysis on nonorganochlorine insecticides and diabetes

- Protocol:
 - Submitted to the PROSPERO database.
 - Under revision for publication in peer-reviewed journal.
- Planned for 2018.

THANKS

Acknowledgements for our partners

- We wish to thank the staff of Nepal Development Society for their assistance with the field work.
- We also wish to thank Morten Frydenberg for his statistical advice.

Funding

- Data collection was supported by the International Centre for Occupational and Environmental Medicine and Public Health at the Clinic of Occupational and Environmental Medicine, Odense University Hospital.
- MRHH and BG are supported by PhD scholarships from Aarhus University.

Map credits

- Satellite image sources: Esri, DigitalGlobe, GeoEye, Earthstart Geographics, CNES/Airbus DS, USDA, USGS, AeroGrid, IGN and the GIS User Community.
- Administrative areas and road source: National Geographic Information Infrastructure Programme (Kathmandu, Nepal).

