

Heterogeneity: to pool or not to pool?

Heterogeneity: What do we mean?

- Heterogeneity
- Diversity
- Statistical heterogeneity
- Variation between studies
- 🗆 Bias
- Study quality

What do we mean?

- Sources of between study variation
 - Design elements
 - Patient characteristics
 - Treatments
 - Effect measures/outcomes
 - Effect estimates

The power is too high for meta-analysis with much studies

Reason	No (%) of systematic reviews (n=135)
Statistical heterogeneity too high	32 (24)
Different interventions compared	41 (30)
Different metrics or outcomes evaluated	26 (19)
Different metric of same outcome	7
Different outcome	20
Different study designs	21 (16)
Non-randomised studies	3
Other design issues	18
Different study participants, settings	21 (16)
Data with many counts per participant	5 (4)
Data too limited	11 (8)
Clinical heterogeneity (not otherwise specified)	5 (4)
Synthesis considered inappropriate (not specified why)	3 (2)
Non-normality of data	1 (1)
No reason given	10(7)
Artefact†	3 (2)
Quantitative synthesis given in text	7 (5)

Example I

As a result of data unavailability, lack of intention to treat analyses, and heterogeneity in programme and trial designs, we determined that a statistical metaanalysis would be inappropriate. Instead we present individual trial results using RevMan and provide a narrative synthesis.

Example I

Trial	Control	No analyse	d	Odds rati	io (95% CI)	Odds ratio (95% CI)
Diagnosis of sexua	lly transmitt	ted infection				
Kirby peer led ^{w6}	Usual care	1545				2.06 (0.67 to 6.32)
Kirby adult led ^{w6}	Usual care	2313				- 2.73 (1.05 to 7.14)
Kirby ^{w6}	Usual care	3761				0.77 (0.29 to 2.09)
Kirby ^{w6}	Usual care	372	-			0.31 (0.03 to 3.03)
Trenholm ^{w8}	Usual care	277			•	0.99 (0.28 to 3.46)
Trenholm ^{w8}	Usual care	277				1.46 (0.48 to 4.49)
Trenholm ^{w8}	Usual care	163				- 1.73 (0.35 to 8.64)
Trenholm ^{w8}	Usual care	323				0.83 (0.28 to 2.42)

Exai	nple I
	Results The search identified 13 trials enrolling about 15 940 US youths. All outcomes were self reported. Compared with various controls, no programme affected incidence of unprotected vaginal sex, number of partners, condom use, or sexual initiation. One trial observed adverse effects at short term follow-up (sexually transmitted infections, frequency of sex) and long term follow-up (sexually transmitted infections, pregnancy) compared with usual care, but findings were offset by trials with non-significant findings. Heterogeneity prevented with usual care, but this was limited to short term follow-up and countered by trials with non-significant findings. Heterogeneity prevented meta-analysis. Conclusion Programmes that exclusively encourage abstince from sex do not seem to affect the risk of HIV infection in high income countries, as measured by self propertion in high income countries, as measured by self

To pool or not to pool

Clinical heterogeneity

- Reconsider study eligibility?
- Is pooling results defendable?
- Don't rely on l² for ultimate verdict
- Outcome heterogeneity
 - Ways to deal with
- Statistical heterogeneity
 - There are methods to account for statistical heterogeneity
 - Random effect models/Prediction intervals
 Restriction/sensitivity analysis
 - Meta-regression

Explaining heterogeneity

"Heterogeneity should be the starting point for further examination" M.Egger

How to deal with heterogeneity

- Heterogeneity can (should!?) be the starting point for further investigation
- Explanation of heterogeneity is an important goal
 Sensitivity analysis
 - Meta-regression

Heterogeneity

- Clinical characteristics and study characteritics can cause heterogeneity
- Design elements, clinical characteritics (at study level) and risk of bias used to explore heterogeneity
- Absence of heterogeneity does not mean absence of bias

Risk of bias

- Bias vs risk of bias
- . Quality vs risk of bias
- m. Risk of bias vs reporting
- IV. Scales and scores
- v. Risk of bias: empirical evidence

Risk of bias?

Rosiglitazone evaluated for cardiovascular outcomes in oral ∋ @ agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial

Philip D Home, Stuart J Pocock, Henning Beck-Nielsen, Paula S Curtis, Ramon Gomis, Markolf Hanefeld, Nigel P Jones, Michel Komejda, John J V McMurray, for the RECORD Study Team*

i. Bias vs Risk of bias

Risk of bias?

EuroIntervention

Favourable effect of statin therapy on early survival at the time of percutaneous coronary intervention for ST-elevation myocardial infarction and shock

Bias vs risk of bias

- We do (often) not know whether the results are biased
- But: we can assess the risk of bias

ii. Study quality vs Risk of bias

Study quality?

ORIGINAL ARTICLE

Evaluation of gastric emptying rate in patients with fibromyalgia: a case control study

Serpil Erdogan · Gulcan Gurer · Hamdi Afsın · Yuksel Kucukzeybek

Materials and methods

Fifteen FM (ages 17–68 years) and 15 age-matched healthy women volunteers (ages 20–65 years) as a control group were enrolled in this study. The classification and evalua-

III. Reporting vs risk of bias

Quality vs risk of bias Quality is the best the authors have been able to do Low study quality ≠ high risk of bias Good quality but still high risk of bias Unblinded study of surgical intervention Low quality but no risk of bias Lacking sample size calculation

Methodological approach	RCTs using but not reporting the methodological approach, $\% (n/N)^a$	95% confidence intervals, %
Concealment of randomization	96 (52/54)	87-100
Blinding of		
Participants	20 (5/25)	7-41
Health care providers	65 (41/63)	52-77
Data collectors ^b	65 (53/82)	53-75
Outcome assessors ^c	79 (64/81)	69-87
Data analysts	50 (47/94)	40-60

Reporting vs risk of bias

- We are actually judging reporting
- Reporting not always good proxy for conduct
- □ 'Solution': make a category 'not reported'

IV: Use of quality assessment scales

Quality scores JAMA paper Different quality scores (n=25) applied to one meta-analysis Based on quality score studies were divided into high and low quality Summary estimate by quality Standard assumption: better quality results in more valid estimates

Table 1 Characteristics of 26 Scales				
Table 1. Characteristics of 25 Stales	for Quality A	ssessment of Clinic	cal Trials	dological
		Key	Domains, 9	6*
Scale	No. of Items	Randomization	Blinding	Withdrawals
Andrew, ¹⁷ 1984	11	9.1	9.1	9.1
Beckerman et al, ¹⁸ 1992	24	4.0	12.0	16.0
Brown,19 1991	6	14.3	4.8	0
Chalmers et al.20 1990	3	33.3	33.3	33.3
Chalmers et al, ²¹ 1981	30	13.0	26.0	7.0
Cho and Bero, ²² 1994	24	14.3	8.2	8.2
Colditz et al, ²³ 1989	7	28.6	0	14.3
Detsky et al, ²⁴ 1992	14	20.0	6.7	0
Evans and Pollock,25 1985	33	3.0	4.0	11.0
Goodman et al, ²⁶ 1994	34	2.9	2.9	5.9
Gøtzsche,27 1989	16	6.3	12.5	12.5
Imperiale and McCullough, ²⁸ 1990	5	0	0	0
Jadad et al. ²⁹ 1996	3	40.0	40.0	20.0

Scale	Median Score (Range), %	Threshold for High Quality, %†
Poynard, ³⁵ 1988	38.5 (15.4-76.9)	50.0
Chaimers et al. ²¹ 1981	39.8 (8.6-76.8)	NA
Spitzer et al. ³⁸ 1990	48.1 (25.9-78.8)	NA
Beckerman et al, ¹⁸ 1992	50.0 (25.0-75.0)	52.0
Linde et al; ³⁰ 1997	50.0 (14.3-92.9)	71.4
Chaimers et al. ²⁰ 1990	55.6 (11.1-88.9)	66.7
Cho and Bero, ²² 1994	55.6 (37.8-75.6)	NA
Detsky et al. ²⁴ 1992	58.7 (23.3-89.3)	NA
Colditz et al. ²⁰ 1989	57.1 (14.3-85.7)	NA
Getzsche, ²⁷ 1989	57.1 (7.1-71.4)	NA
Smith et al, ³⁷ 1992	57.1 (25.7-85.7)	50.0
Jonas et al. 1993‡	58.3 (33.3-88.9)	76.0
Imperiale and McCullough, ²⁵ 1990	60.0 (20.0-100)	80.0
Jadad et al, ²⁹ 1996	60.0 (0-100)	60.0
Koes et al, ³¹ 1991	60.0 (20.0-78.6)	50.0
Reisch et al. ³⁶ 1989	62.5 (37.5-87.5)	NA.
Onghena and Van Houdenhove, ³⁴ 1992	62.9 (34.3-100)	NA
Evans and Pollock, ²¹ 1985	63.8 (32.5-88.2)	NA
Levine. ³⁷ 1991	64.4 (26.8-79.5)	60.0
Goodman et al. ²¹ 1994	67.7 (31.0-83.2)	60.0
Kleijnen et al. ³⁰ 1991	70.0 (30.0 -98.0)	55.0
Nurmohamed et al, ¹² 1992	75.0 (25.0-100)	87.5
Andrew,17 1984	77.3 (45.5-90.9)	72.7
Brown,10 1991	81.0 (52.4-95.2)	81.0
tor Dist at al ³⁰ 1000	P2 0 /49 6 01 /1	50.0

Scale	No. of Trials	RR (95% CI)					Favors LN	WH Favo	rs Cont
Nurmohamed et al, ¹³ 199	2 High 7 Low 10	0.90 (0.67-1.21) 0.72 (0.57-0.92)		_			-	-	
Chalmers et al,20 1990	High 8 Low 9	0.90 (0.69-1.18) 0.70 (0.54-0.91)					-		_
Chalmers et al,21 1981	High 8 Low 9	0.90 (0.69-1.18) 0.70 (0.54-0.91)					-		_
Imperiale and McCullough,28 1990	High 7 Low 10	0.87 (0.67-1.13) 0.71 (0.55-0.93)					-		-
Smith et al,37 1992	High 10 Low 7	0.85 (0.68-1.08) 0.68 (0.50-0.93)	_				-	-	
Jadad et al,29 1996	High 9 Low 8	0.83 (0.65-1.05) 0.73 (0.54-0.98)					-	_	
Levine, ³² 1991	High 11 Low 6	0.75 (0.60-0.94) 0.86 (0.63-1.19)			_	-		-	
Koes et al, ³¹ 1991	High 12 Low 5	0.74 (0.61-0.91) 1.13 (0.70-1.82)				-	-		;
Linde et al,30 1997	High 3 Low 14	0.64 (0.37-1.11) 0.81 (0.66-0.99)	~		-		+0	_	
Dolditz et al,23 1989	High 4 Low 13	0.63 (0.44-0.90) 0.86 (0.69-1.07)	~		•	_	<u>+</u>		

Quality as a weight factor in pooling?

- Assumtpion: High quality studies provide better estimates
- Use of scales/aggregate scores should be discouraged
 Choice of scales is arbitrarily
- Preferably: use risk of bias assessment to explore heterogeneity per item:
 - RestrictionSensitivity analysis
 - Meta-regression

Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial

Philip D Home, Stuart J Pocock, Henning Beck-Niel	m, Paula 5 Curtis, Ramon Gomis, Markolf Hanefeld, Nigel P Jones, Michel Komojdo
John 11/ McMonney for the DCCOPA Study Terran?	

V: Risk of bias: empirical evidence

	No. (%) of Case-Report Forms Reviewed			
	Rosiglitazone (n = 278)	Control (n = 271)	Total (N = 549)	
With problems	45 (16.2)	25 (9.2)	70 (12.8)	
Favoring rosiglitazone	44 (15.8)	13 (4.8)	57 (10.4)	
Favoring control	1 (0.4)	12 (4.4)	13 (2.4)	

Empirical evidence for risk of bias

- Is there evidence bias indeed has an effect on the outcome?
 - Extensive literature for randomized studiesAlmost no literature for observational studies

Risk of bias

- □ We can assess risk of bias, not bias (sometimes we can)
- Study quality has no direct translation in terms of risk of bias
- We are actually assessing study reporting
- Use of scales and scores should be discouraged
- Empirical evidence for risk of bias mainly for RCTs

Funnel plot

- Visual way to detect (publication) bias
- The scatter should be symmetrical around overall effect
- Effect measure is plotted against a measure of precision

Sources of funnel plot asymmetry

- Publication bias
- True heterogeneity
- Chance

