BASIC STATISTICAL METHODS

Olaf Dekkers/Sønderborg/2016

Basic statistical methods: overview

- Fixed versus random effect models
- Weighting studies
- □ Choice of the model

	Asp	oirin	Plac	cebo	
Study	N ₁	Vasc event	N ₀	Vasc event	RR
1	832	86	821	120	0.71
II	1620	450	1628	601	0.75
	521	51	531	76	0.68
Total	2973	587	2980	797	

Pooled RR by adding the numbers in the two study arms

□ RR = (587/2973) / (797/2980) =

Pooled RR by adding the numbers in the two study arms

 \square RR = (587/2973) / (797/2980) = 0.74

	Asp	oirin	Plac	ebo	
Study	N ₁	Vasc event	N ₀	Vasc event	RR
1	832	86	821	120	0.71
II	1620	450	1628	601	0.75
	521	51	531	76	0.68
Total	2973	587	2980	797	<u>0.74</u>

	asp	oirin	Plac	ebo	
Study	N ₁	Vasc event	N ₀	Vasc event	RR
I	832	86	821	120	0.71
II	1620	450	<u>406</u>	<u>150</u>	0.75
	521	51	531	76	0.68
Total	2973	587	1758	346	

□ RR = (587/2973) / (346/1758) =

	asp	irin	Plac	ebo	
Studie	N ₁	Vasc event	N ₀	Vasc event	RR
I	832	86	821	120	0.71
11	1620	450	<u>406</u>	<u>150</u>	0.75
	521	51	531	76	0.68
Total	2973	587	1758	346	<u>1.00</u>

33 observational studies on the association between circumcision and the risk of HIV infection in men

Van Howe et al 1999

Results from 33 observational studies examining the association between circumcision and the risk of HIV infection in men

O'Farrell & Egger 2000

Fixed effect analysis

Fixed effects analysis

Principle

- Basic unit is the effect estimate of individual studies
- Weighted average of studies
- Weighting according to standard error (SE) from every effect estimate (precision) = *Inverse variance weighting*
- □ Weights: 1/variance (= 1/SE squared)
 - How larger the SE (less precise estimate), how smaller the weights

	Asp	oirin	Plac	cebo	
Study	N ₁	Vasc event	N ₀	Vasc event	RR
1	832	86	821	120	0.71
II	1620	450	1628	601	0.75
	521	51	531	76	0.68
Total	2973	587	2980	797	

Weighted average

For every study i:
 E_i = effect (<u>In</u>RR)
 Se_i = se InRR

• Weight
$$W_i = \frac{1}{SE_i^2}$$

• E_{pooled(In scale)} $E_{pooled} = \frac{\Sigma W_i E_i}{\Sigma W_i}$

Study I
 InRR -0.34 (= In 0.71)
 SE(InRR) = 0.132

$$\square w_{l} = \frac{1}{SE_{i}^{2}} = 57.5$$

	Aspi	irine	Placebo			
Studie	N ₁	Vasc event	N ₀	Vasc event	InRR	Weight
1	832	86	821	120	-0.34	57.5
11	1620	450	406	150	-0.29	173.3
	521	51	531	76	-0.38	34.6
Totaal	2973	587	1758	346		

Weighted average

$$E_{pooled} = \frac{\Sigma W_i E_i}{\Sigma W_i}$$

 $\frac{57.5 * -0.34 + 173.3^{*} - 0.29 + 34.6 * - 0.39}{57.5 + 173.3 + 34.6} = -0.32$

= pooled lnRR

 \rightarrow Pooled RR = 0.73

Finally...

Fixed effect analysis

Forest plots

- Individual effect estimates are displayed with 95% Cls
- Box area is proportional to the weight of the study
 Bigger studies get more weight
- The diamond represents the overall summary estimate with 95% CI represented by its width
- This overall summary estimate can be based on a fixed effect analysis or a random effects analysis

Fixed effects: interpretation

Interpretation 1

- All studies estimate the same underlying true effect
- Estimate this single effect

Interpretation 2

- Studies may have different true effects
- Estimate the average of these effects

Fixed effects: interpretation

For both interpretations the CI reflects only within study error (standard deviation)

Variation across studies is ignored

Fixed effect analysis methods

Inverse variance method

Difficulties with zero cells (to add 0.5 to every cell)

Mantel Haenszel

- Weighting scheme depends on which effect estimate is used (OR, RR, RD)
- Better statistical properties than IV in case of few events

Peto method

Mainly usefull in case of few events

Random effects model

Random vs fixed effects

Fixed effect model assumes that the true effect does not differ between studies (Interpretation 1)

In a random effects model this assumption is relaxed by taken between study variation into account

Random effects model

- We assume that the true effect in each study is normally distributed with variance between studies
 = tau-squared
- □ This tau-squared is used to modify study weights

• Weight is
$$\frac{1}{SE_i^2 + tau^2}$$

Fixed effect analysis

Random effects analysis

Fixed vs random effects model

- Smaller studies get more weight in a random effect model
- Wider CIs in random effects models because the true effect may vary
- Random effect estimates are more conservative
- If between study variance is zero than random and fixed effect model are identical
- If number of studies is small, tau-sqaured can not be estimated reliably (<5 studies)
- And: probably the random effect assumption are more realistic

Fixed vs random effect models I

From: Higgins

Fixed vs random effect models II

From: Higgins

What do you think?

Study or subgroup	Experimental		Control			Dif	Mean ference		Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)		IV,Ranc	lom,95% Cl			IV,Random,95% CI
Ahrendt 2009	372	0.1 (0.4)	371	0.1 (0.3)					100.0 %	0.0 [-0.05, 0.05]
Total (95% CI)	372		371						100.0 %	0.0 [-0.05, 0.05]
Heterogeneity: not ap	plicable									
Test for overall effect:	Z = 0.0 (P = 1.0)									
Test for subgroup diffe	rences: Not applica	ble								
					а	1	<u> </u>	r.		
					-100	-50	0 50	100		
				Favou	rs experir	nental	Favours	control		

Choice of the model

- Main decision: fixed vs random model
- □ Other choice: depend on data structure

Study	Event T	Total T	Event C	Total C
1				
2				

Allows for complete flexibility IV, MH, Peto

Choice of the model

Main decision: fixed vs random model

Other choice: depend on data structure

Study	Event T	Total T	Event C	Total C
1				
2				

Allows for complete flexibility IV, MH, Peto

Study	InRR	selnRR
1		
2		

Only IV and DS&L can be estimated

The $\mathbf{N} \mathbf{E} \mathbf{W}$	ENGLAND
JOURNAL	of MEDICINE

ESTABLISHED IN 1812

JUNE 14, 2007

VOL. 356 NO. 24

Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes

Steven E. Nissen, M.D., and Kathy Wolski, M.P.H.

NEJM 2007;356;24

Meta-analysis NEJM 2007

Table 4. Rates of Myocardial Infarction and Death from Cardiovascular Causes.							
Study	Rosiglitazone Group	Control Group	Odds Ratio (95% CI)	P Value			
	no. of events/t	otal no. (%)					
Myocardial infarction							
Small trials combined	44/10,285 (0.43)	22/6106 (0.36)	1.45 (0.88–2.39)	0.15			
DREAM	15/2,635 (0.57)	9/2634 (0.34)	1.65 (0.74–3.68)	0.22			
ADOPT	27/1,456 (1.85)	41/2895 (1.42)	1.33 (0.80–2.21)	0.27			
Overall			1.43 (1.03–1.98)	0.03			
Death from cardiovascular causes							
Small trials combined	25/6,845 (0.36)	7/3980 (0.18)	2.40 (1.17–4.91)	0.02			
DREAM	12/2,635 (0.46)	10/2634 (0.38)	1.20 (0.52–2.78)	0.67			
ADOPT	2/1,456 (0.14)	5/2895 (0.17)	0.80 (0.17–3.86)	0.78			
Overall			1.64 (0.98–2.74)	0.06			

NEJM 2007:356;24

Table II.	Myocardial	infarction.
-----------	------------	-------------

Method	Estimated relative risk	95 per cent CL	p-value two-sided
Random effects	1.51	0.91-2.48	0.11
Fixed effects			
Nissen and Wolski	1.43	1.03-1.98	0.03
Cox analysis	1.43	1.03-1.96	0.033
Logistic regression	1.43	1.03-1.98	0.033
STATXACT	1.43	1.01 - 1.98	0.037
STATXACT (asymptotic)	1.43	1.03-1.98	0.033

Calculation method	Nissen <i>et al</i> . (42 studies)			
	Myocardial infarction OR (95% CI)	Cardiovascular death OR (95% CI)		
Fixed effects, Peto OR Fixed effects, MH (TAC) Fixed effects, MH (CC) Fixed effects, MH (TACZ) Fixed effects, MH (CCZ)	1.43 (1.03–1.98) 1.36 (1.00–1.84) 1.28 (0.95–1.72) 1.35 (1.00–1.82) 1.26 (0.93–1.69)	1.64 (0.98–2.74) 1.51 (0.94–2.44) 1.33 (0.83–2.13) 1.39 (0.91–2.13) 1.17 (0.77–1.77)		

Table 1. Meta-analytic Odds Ratios for Myocardial Infarction and Cardiovascular Death*

Meta-analytic	Myocardial Infarction		Cardiovascular Death	
Method	k	Odds Ratio (95% CI)	k	Odds Ratio (95% CI)
Fixed, Peto	38	1.43 (1.03–1.98)	23	1.64 (0.98–2.74)
Fixed, IV (TAC)+	38	1.34 (0.97-1.84)	23	1.46 (0.88-2.42)
Fixed, IV (CC)+	38	1.29 (0.94–1.76)	23	1.31 (0.80-2.13)
Fixed, MH (TAC)	38	1.36 (1.00–1.84)	23	1.51 (0.94–2.44)
Fixed, MH (CC)	38	1.28 (0.95–1.72)	23	1.33 (0.83-2.13)
Fixed, MH (TAC+)	42	1.35 (1.00–1.82)	42	1.39 (0.91–2.13)
Fixed, MH (CC+)	42	1.26 (0.93–1.69)	42	1.17 (0.77–1.77)

Diamond Ann Int Med 2007;147

Substantial limitations?

"Alternative meta-analytic approaches that use continuity corrections show lower odds ratios that are not statistically significant. We conclude that the risk for myocardial infarction and death from cardiovascular disease for diabetic patients taking rosiglitazone is uncertain: Neither increased nor decreased risk is established."

NYT 23-02-2010: Nissen vs GSK

- Executives asked Dr. Nissen why he would publish his study if a more detailed look at the data called a patient-level analysis would provide a more reliable result.
- "But suppose we did this patient-level analysis and it looked very different from what you have?" Dr. Krall asked.
- "But there's no way it can," Dr. Nissen soon said. "Come on, guys. You already did your patient-level analysis for 42 trials. You're about to add in two trials that went the wrong way. What do you think's going to happen?"
- Dr. Krall said the two sides disagreed on the numbers.
- "And, the last thing we want to do is get into a public debate about whose analysis is right" Dr. Krall said.
- "No, public debates are just fine," Dr. Nissen interjected. "In fact, the best way I know of to get to the truth is you just get it all out there and you let the chips fall where they may."
- One of the executives responded: "And I supposed the science is the issue. And that's why we think this patient-level approach is the right one."
- "It is the right approach," Dr. Nissen said. "Now I'm going to be equally blunt: you should have done this a long time ago."