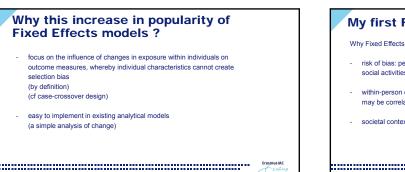
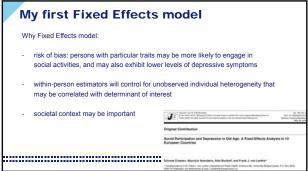
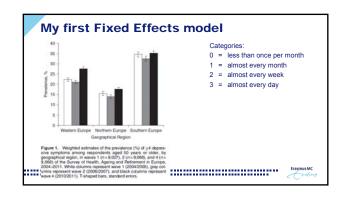


Novel analytical strategies in observational studies: the holy grail

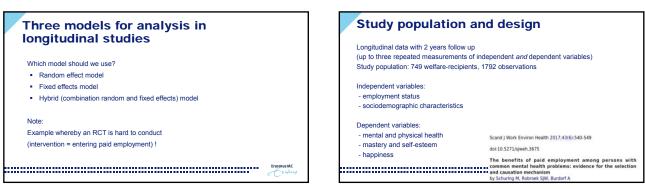

The search for 'exchangeability' in observational studies, whereby the condition of interest (e.g. exposure, intervention) will not be determined by characteristics of the study population, hence, groups with and without the condition of interest are comparable for measured and unmeasured variables


natural experiments whereby the assignment process of individuals to comparison groups resembles random variation in assignment (reality as random process)

Classical example: introduction of interventions at a specific point in time (e.g. legislation)


trasmus Mc

Novel analytical strategies in recent years



	004/2005-36	06/2007	368(7°, 0y Owo	graphical Re	gos, Survey	of Health,		ale	gories:	
		54	ly Wave and G	An international P	legen.		- 0	=	less than once per mor	nth
Type of Activity and Preparity.		filere 1 (200-820			10-++ 2 (2009) 0	#m	÷.,		allow and according to the	
Smarklunek	Western Europe	Northern Europe	Southern Europe	Brodern Europe	Northern Europe	Southern Europe	1	=	almost every month	
Volumery/charty work							2	=	almost every week	
	81.6	78.0	82.9	80.7	74.5	91.8				
+5	6.3	8.3	2.6	6.9	10.0	2.4	3	=	almost every day	
21	12.2	12.7	4.5	12.4	15.5	5.8				
Education/haining										
	91.8	85.5	98.5	91.6	83.0	97.4				
+5	4.9	8.5	8.7	4.4	8.8	0.6				
21	3.4	8.1	0.8	4.0	8.2	2.0				
Sports/hooial stutes										
	73.5	67.A	92.5	72.1	12.8	89.9				
ef.	7.8	6.8	1.9	7.2	4.8	2.0				
21	18.7	25.7	\$.7	20.7	32.4	8.2				
Religious organizations										
0	89.3	93.7	01.4	88.4	87.8	90.0				
41	4.1	1.8	2.8	4.3	5.8	2.1				
21	6.6	4.5	\$.7	7.8	6.2	7.6				
Political community organizations										
0	94.1	94.4	10.0	94.1	.94.1	98.2				
45	4.2	3.1	5.6	2.8	3.8	0.9			Err	asmus
14	1.0	2.5	1.6	2.1	2.1	0.0				420

	Mode	el 1* (<i>n</i> ≈ 9,068)	Mod	del 2 th (n = 7,385)
Type of Activity	p	Robust 95% CI	8	Robust 95% CI
Voluntary/charity work	0.085	-0.022, 0.193	0.020	-0.112, 0.152
Education/training	0.023	-0.096, 0.141	0.041	-0.101, 0.183
Sports/social clubs	0.097	0.004, 0.190	0.081	-0.036, 0.199
Religious organizations	-0.145	-0.281, -0.010	-0.190	-0.365, -0.016
Political/community organizations	0.111	-0.051, 0.273	0.222	0.018, 0.428
Abbreviation: CI, confidence interval. ^a Results were adjusted for social pa- ^b Results were adjusted for social p- employment status, financial difficultie diagnosed diseases (heart attack, high chronic lung disease).	rticipation (mut articipation (m es, self-rated h	utually adjusted), age, ealth, long-term illness	time, househol s, activity limita	tions, and physicia

Random effect model (also called mixed model)

The individual-specific intercept (β_0) is a random factor Measured time-varying and time-constant factors can be included in the model

 Regression equation:
 $Y = \beta_{01} + \beta_1 x + ...$
 β_{01} = random intercept (hence, the name random model)

 β_1 = association between paid employment (x) and health (Y)

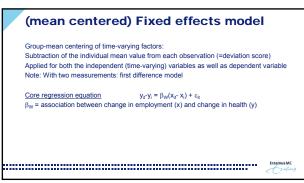
Interpretation Insight in health difference between employed and unemployed persons Not possible to distinguish between persons who were already employed and persons who became employed during follow-up

Erasmus MC

Descriptive information	of Ic	ngit	udi	nal	stud	dy												
Table 2. Mental health, physical hea are unemployed or employed for >12																		
				eline			After 1 year					After 2 years						
	E	Employed		d Unemploy				Imployed Unemploy			d Emplo		ed Unemp		mploy			
	Mean	\$0	%	Mean	\$0	%	Mean	SD	%	Mean	\$0	1/4	Mean	SD	%	Mean	SD	%
Mental health (0-100, higher is better)	54.9				23.9		63.9			43.2			65,4		1	44.8		-
Physical health (0-100, higher is better)	61.9 28.6				27.8		66.5 31.8	27.8		50.9			69.5 32.7	24.2		54,1		
					2.9		13.6	2.9		11.2			14.2				3.38	
Self esteem (10-40, higher is better) Mastery (6-18, higher is better)	11.3	2.1																

Random	effect model (also o	called mixed model)	
The effect of pai	d employment on health		
	Random effect on health (Δ)	Baseline unemployed persons	
Mental health	18.41 ± 2.53	39.2 ± 23.9	
Physical health	10.67 ± 2.42	51.2 ± 27.8	
			Erasmus MC Zafung

Random effect model (also called mixed model)


Principles:

Variables and confounders as time-varying or time-independent factors
 Repeated measurements for a substantial part of persons

Disadvantages:

- 1. Heterogeneity between individuals is assumed a random variable with zero mean with a constant variance (not always realistic assumption)
- 2. Random variable for heterogeneity between individuals is independent from (unmeasured) confounders
- The estimates combines within and between variation (i.e. difference between persons with and without a specific condition AND persons who change from without to with condition or vice versa)

Fixed effects model Solution for problems of random model: person as his/her own control (e.g. case-crossover design, fixed effects model) Principles: 1. Different freatment statuses within the same individual: a person as own control 2. Control for all known and unknown attributes of subjects (time invariant; fixed) 3. Time-varying factors can be included in the model Requirements: 1. The outcome variable must be measured at least twice for each individual 2. The treatment status must change across two measurements for a substantial proportion of the study population When applicable ?

(mean centered) Fixed effects model

Complete FE model:

 $y_{it}\text{-}y_i = \beta_{0t} + \beta_W(Factor_{it}) + \beta_2(x_{it}\text{-} x_i) + \mu_i + \epsilon_{it}$

- intercept, that my be different for each point in time $\beta_{0t} =$
- β_W = Factor = Paid employment = association between change in employment (x) and change in health (y)
- $\beta_2(x_{it} x_i) = \text{time-varying covariates}$
- error term for time-invariant covariates (whether observed or not) for individual *i*, presented as a fixed intercept for each individual
- ε_{it} = random error for individual *i* at time *t*

(mean centered) Fixed effects model

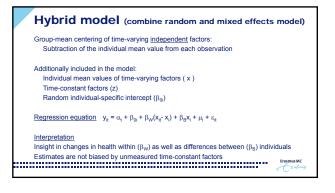
Different FE models:

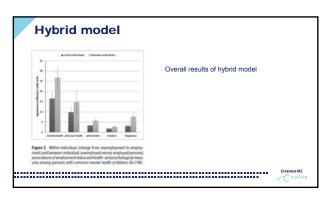
- 1. Regress change in exposure between wave 1 and wave 2 on change in health between wave 1 and wave 2 (contemporaneous association)
- 2. Regress change in exposure between wave 1 and wave 2 on change in health between wave 2 and wave 3 (lagged association)

ErasmusMC Lada

(mean o	centered	d) Fixed effects mode	I
Comparision of e	effect of paid empl	loyment on health	
	Random effect on health (Δ)	Fixed effects (within)	
Mental health	18.41 ± 2.53	16.47 ± 2.78	
Physical health	10.67 ± 2.42	9.86 ± 2.69	
Comparison: - confidence inte	ervals higher in FE	E model	
Theory on why n	esults are similar	?	Erasmus M

Fixed effects model


Interpretation:


- Insight in changes in health within individuals who enter of exit paid employment
- * Exposure-response relationship: estimate is a population average effect
- change in exposure as exogenous variable; truly exogenous ? high internal validity, low external validity .

Disadvantage:

- Not possible to estimate time-invariant variables in the model (random term)
- No information on context (i.e. individual characteristics, eg education, sex) Power considerations:
- persons without a change in the independent variable contribute only a little
- logistic regression model: persons without a change in dependent variable are

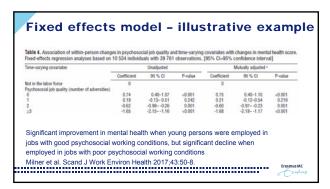
not included in the analysis

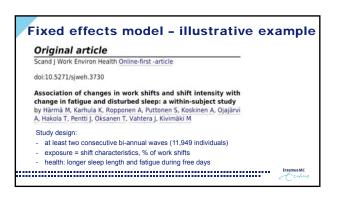
Mental health		β (SD)
(0-100, higher is better)	16.34 (3.40)	26.74 (5.08)
Physical health (0-100, higher is better)	9.79 (2.86)	14.61 (5.57)
Self esteem (0-100, higher is better)	11.23 (2.21)	19.00 (3.56)
Mastery (0-100, higher is better)	14.11 (3.18)	22.81 (5.35)
	OR (95%CI)	OR (95%CI)
Happiness (happy/very happy)	3.08 (1.37-6.93)	7.74 (2.27-26.36)

Comparison of three models

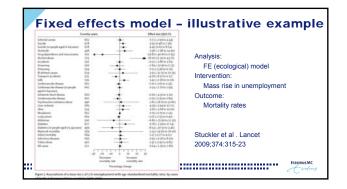
Comparision of effect of paid employment on health

	Random effect on health (Δ)	Fixed effects (within)	Hybrid model (within)	(between)
Mental health	18.41 ± 2.53	16.47 ± 2.78	16.34 ± 3.40	26.74 ± 5.08
Physical health	10.67 ± 2.42	9.86 ± 2.69	9.79 ± 2.86	14.61 ± 5.57
Comparison: - confidence int	ervals higher in FE	model, highest	in hybrid model	ErasmusMC
				Czalmo


	Random	Fixed	Hybrid
Variables included in the model			
- Only time-varying variables		х	
- Time-varying & time-constant variables	х		х
Persons included in the analysis			
- Only persons with change of time-varying variable		х	
- All persons (with or without change of x in time)	х		х
Not biased by unmeasured time-constant variables		х	х
Estimates for changes within individuals		х	x
Estimates for differences between individuals			х


Fixed effects model - revisited

Criticism on fixed effects model:


- No information on context (eg education, gender); important factors of between-individual variation
- Independent factor is defined by a sudden change and, thus, fixed effects model cannot by used to study long-term consequences or cumulative exposure
- (e.g. effect of smoking on lung cancer cannot be studied with FE model) 3. Change is estimated as combined effect (0 to 1 and 1 to 0)
- Dependent variable must be measured twice, thus, this limits topics to be studied, eg no mortality as endpoint! (Alternative strategy: case-crossover design)

trasmusMC Ladro

		Fatigue during wor	k			Fatigue during free	days	
	N	OR 195% CI	Age	Gender	N	OR (95% CI)	Age	Gender
Allerk shifts								
Morning shifts	2059	0.9640.85-1.080			1753	0.8610.78-0.957		
Evening shifts	2059	1.13 (0.98-1.28)			1753	1,1040.93-1.288		0.092
Night shifts	2059	1.05(0.90-1.22)			1753	1.38(1.16-1.64)		0.094
Non-day shifts	2059	1.10(0.96-1.22)			1753	1.2511.10-1.420		
shift intensity								
Long spells of work shifts	2059	1.10 (0.84-1.42)			1753	1.2540.98-1.640		
>2 consecutive night shifts	2059	1.10/1.05-1.190			1753	1,10(1.03-1.16)		
		1.13(1.05-1.22)*				1.05(0.98-1.13)*		
>4 consecutive night shifts	2059	1.05 (0.95-1.13)			1753	1.00/0.93-1.10		
		1.05(0.93-1.16)*				1.03 (0.86-1.19)*		
Short shift intervals	2081	1.42 (1.19-1.72)			1783	1.25(1.03-1.49)	0.092	

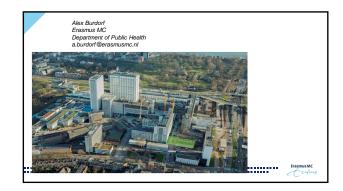
Fixed effects model – illustrative example Jund of Date Holds | pp. 14 | dotti 301/pdeud/55070 Combining fixed effects and instrumental variable approaches for estimating the effect of psychosocial job quality on mental health: evidence from 13 waves of a nationally representative cohort study Allison Milner^{1,2}, Zoe Aitken¹, Anne Kavanagh¹, Anthony D. LaMontagne², Frank Pega³, Dennis Petrie⁴

Fixed effects model - illustrative example

Instruments:

- 1. Workplace entitlement of flexible start and finish times
- 2. Workplace entitlement of ability to work from home

Rationale on three assumptions:


- Workplace entitlement (=organizational factor) is likely to be related to psychosocial job quality (exposure at individual level)
- Workplace entitlement alone will not affect a person's mental health, but its effect acts primarily through psychosocial job quality
- 3. Workplace entitlement is not associated with unmeasured confounders

Erasmus MC Lafan

So, what next ?

- 1. Popularity of fixed effects models will certainly continue (inching towards causal inference)
- 2. The classical random effect model (= mixed model) for repeated measurements will most likely remain the most common analytical method
- Hybrid models have a slow uptake and some debate among statisticians whether we can truly separate within- and between person effects (esp confidence intervals of between person effects are high)

.....

